Fairshare Data Pricing for Large Language Models

Published: 06 Apr 2025, Last Modified: 18 Apr 2025LTI-SRS 2025 OralEveryoneRevisionsBibTeXCC BY 4.0
Track: Main Track
Keywords: data pricing, data market, large language model, data valuation, data attribution
Abstract:

Training data is a pivotal resource for building large language models (LLMs), but unfair pricing in data markets poses a serious challenge for both data buyers (e.g., LLM builders) and sellers (e.g., human annotators), which discourages market participation, reducing data quantity and quality. In this paper, we propose a fairshare pricing framework that sets training data prices using data valuation methods to quantify their contribution to LLMs. In our framework, buyers make purchasing decisions using data valuation and sellers set prices to maximize their profits based on the anticipated buyer purchases. We theoretically show that pricing derived from our framework is tightly linked to data valuation and buyers' budget, optimal for both buyers and sellers. Through market simulations using current LLMs and datasets (math problems, medical diagnosis, and physical reasoning), we show that our framework is fairshare for buyers by ensuring their purchased data is reflective of model training value, leading to higher LLM task performances per-dollar spent on data, and fairshare for sellers by ensuring they sell their data at optimal prices. Our framework lays the foundation for future research on equitable and sustainable data markets for large-scale AI.

Submission Number: 4
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview