On the Extension of the Weisfeiler-Lehman Hierarchy by WL Tests for Arbitrary GraphsDownload PDF

23 Jun 2022, 20:19 (modified: 12 Sept 2022, 19:10)ECMLPKDD 2022 Workshop MLG SubmissionReaders: Everyone
Keywords: Weisfeiler-Lehman test, Weisfeiler-Lehman Hierarchy, Attributed Graphs, Dynamic Graphs, Graph Isomorphism
Abstract: Graph isomorphism (GI) has occupied both theoreticians and applied scientists since the early 1950s. Over the years, several approaches and algorithms with which an isomorphism between two graphs can be tested have been developed. A general approach is the Weisfeiler–Lehman (WL) test, which is based on a coloring algorithm and provides a necessary criterion for graph isomorphism. However, the WL test is restricted to examining graphs with only node attributes. Therefore, this paper presents two extensions of the WL algorithm to allow for testing on arbitrary graphs. One considers edge attributes, and the other tests the isomorphism on dynamic graphs. Additionally, we extend the WL-hierarchy by the attributed and dynamic WL tests and show that it is a partial order, which induces a lattice. In the future, this may allow for practical implications coming from lattice theory.
0 Replies