Self-Paced Learning Enhanced Physics-informed Neural Networks for Solving Partial Differential EquationsDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Abstract: There is a hit discussion on solving partial differential equation by neural network. The famous PINN (physics-informed neural networks) has drawn worldwide attention since it was put forward. Despite its success in solving nonlinear partial differential equation, the difficulty in converging and the inefficiency in training process are definitely huge concerns. Normally, data for PINN is randomly chosen for a given distribution. Additionally, it's fitted to a model in a meaningless way. Curriculum Learning is a learning strategy that trains a model from easy samples to hard ones, which represents the meaningful human learning order. Self-paced Learning (SPL) is one of the significant branches of Automatic Curriculum Learning, which takes example-wise the training loss as Difficulty Measurer. SPL is an efficient strategy in enhancing the convergence rate of numerous models. In this paper, we propose a novel SPL-PINN learning framework, with SPL to accelerate the convergence progress of PINN. We demonstrate the effectiveness of SPL-PINN in a typical parabolic equation and Burgers equation.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Machine Learning for Sciences (eg biology, physics, health sciences, social sciences, climate/sustainability )
5 Replies

Loading