Large Brain Model for Learning Generic Representations with Tremendous EEG Data in BCI

Published: 16 Jan 2024, Last Modified: 07 Apr 2024ICLR 2024 spotlightEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: EEG, brain-computer interface, representation learning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: The current electroencephalogram (EEG) based deep learning models are typically designed for specific datasets and applications in brain-computer interaction (BCI), limiting the scale of the models and thus diminishing their perceptual capabilities and generalizability. Recently, Large Language Models (LLMs) have achieved unprecedented success in text processing, prompting us to explore the capabilities of Large EEG Models (LEMs). We hope that LEMs can break through the limitations of different task types of EEG datasets, and obtain universal perceptual capabilities of EEG signals through unsupervised pre-training. Then the models can be fine-tuned for different downstream tasks. However, compared to text data, the volume of EEG datasets is generally small and the format varies widely. For example, there can be mismatched numbers of electrodes, unequal length data samples, varied task designs, and low signal-to-noise ratio. To overcome these challenges, we propose a unified foundation model for EEG called Large Brain Model (LaBraM). LaBraM enables cross-dataset learning by segmenting the EEG signals into EEG channel patches. Vector-quantized neural spectrum prediction is used to train a semantically rich neural tokenizer that encodes continuous raw EEG channel patches into compact neural codes. We then pre-train neural Transformers by predicting the original neural codes for the masked EEG channel patches. The LaBraMs were pre-trained on about 2,500 hours of various types of EEG signals from around 20 datasets and validated on multiple different types of downstream tasks. Experiments on abnormal detection, event type classification, emotion recognition, and gait prediction show that our LaBraM outperforms all compared SOTA methods in their respective fields. Our code is available at https://github.com/935963004/LaBraM.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: applications to neuroscience & cognitive science
Submission Number: 5418
Loading