Improving Complex Reasoning over Knowledge Graph with Logic-Aware Curriculum TuningDownload PDF

Anonymous

16 Feb 2024ACL ARR 2024 February Blind SubmissionReaders: Everyone
Abstract: Answering complex logical queries over incomplete knowledge graphs (KGs) is challenging. Most previous works have focused on learning entity/relation embeddings and simulating first-order logic operators with various neural networks. However, they are bottlenecked by the inability to share world knowledge to improve logical reasoning, thus resulting in suboptimal performance. In this paper, we propose a complex logical reasoning schema over knowledge graphs upon large language models (LLMs), containing a curriculum-based logical-aware instruction tuning framework, named LACT. Specifically, we augment the arbitrary first-order logical queries via binary tree decomposition, to stimulate the reasoning capability of LLMs. To address the difficulty gap among different types of complex queries, we design a simple and flexible logic-aware curriculum learning framework. Experiments across widely used datasets demonstrate that LACT has substantial improvements (brings an average +5.5% MRR score) over advanced methods, achieving the new state-of-the-art.
Paper Type: long
Research Area: NLP Applications
Contribution Types: NLP engineering experiment, Approaches to low-resource settings
Languages Studied: English
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview