DICE: Diversity in Deep Ensembles via Conditional Redundancy Adversarial EstimationDownload PDF

Published: 12 Jan 2021, Last Modified: 05 May 2023ICLR 2021 PosterReaders: Everyone
Keywords: Deep Learning, Deep Ensembles, Information Theory, Information Bottleneck, Adversarial Learning
Abstract: Deep ensembles perform better than a single network thanks to the diversity among their members. Recent approaches regularize predictions to increase diversity; however, they also drastically decrease individual members’ performances. In this paper, we argue that learning strategies for deep ensembles need to tackle the trade-off between ensemble diversity and individual accuracies. Motivated by arguments from information theory and leveraging recent advances in neural estimation of conditional mutual information, we introduce a novel training criterion called DICE: it increases diversity by reducing spurious correlations among features. The main idea is that features extracted from pairs of members should only share information useful for target class prediction without being conditionally redundant. Therefore, besides the classification loss with information bottleneck, we adversarially prevent features from being conditionally predictable from each other. We manage to reduce simultaneous errors while protecting class information. We obtain state-of-the-art accuracy results on CIFAR-10/100: for example, an ensemble of 5 networks trained with DICE matches an ensemble of 7 networks trained independently. We further analyze the consequences on calibration, uncertainty estimation, out-of-distribution detection and online co-distillation.
One-sentence Summary: Driven by arguments from information theory, we introduce a new learning strategy for deep ensembles that increases diversity among members: we adversarially prevent features from being conditionally redundant, i.e., predictable from each other.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Data: [CIFAR-10](https://paperswithcode.com/dataset/cifar-10), [CIFAR-100](https://paperswithcode.com/dataset/cifar-100)
14 Replies

Loading