Zero-CL: Instance and Feature decorrelation for negative-free symmetric contrastive learningDownload PDF

29 Sept 2021, 00:30 (edited 10 Mar 2022)ICLR 2022 PosterReaders: Everyone
  • Keywords: Self supervised learning, representation learning
  • Abstract: For self-supervised contrastive learning, models can easily collapse and generate trivial constant solutions. The issue has been mitigated by recent improvement on objective design, which however often requires square complexity either for the size of instances ($\mathcal{O}(N^{2})$) or feature dimensions ($\mathcal{O}(d)^2$). To prevent such collapse, we develop two novel methods by decorrelating on different dimensions on the instance embedding stacking matrix, i.e., \textbf{I}nstance-wise (ICL) and \textbf{F}eature-wise (FCL) \textbf{C}ontrastive \textbf{L}earning. The proposed two methods (FCL, ICL) can be combined synthetically, called Zero-CL, where ``Zero'' means negative samples are \textbf{zero} relevant, which allows Zero-CL to completely discard negative pairs i.e., with \textbf{zero} negative samples. Compared with previous methods, Zero-CL mainly enjoys three advantages: 1) Negative free in symmetric architecture. 2) By whitening transformation, the correlation of the different features is equal to zero, alleviating information redundancy. 3) Zero-CL remains original information to a great extent after transformation, which improves the accuracy against other whitening transformation techniques. Extensive experimental results on CIFAR-10/100 and ImageNet show that Zero-CL outperforms or is on par with state-of-the-art symmetric contrastive learning methods.
  • One-sentence Summary: We develop two contrastive learning methods to prevent collapses in symmetric architecture without negative pairs.
16 Replies