DRL-Clusters: Buffer Management with Clustering based Deep Reinforcement LearningDownload PDF

03 Oct 2021, 18:07 (modified: 22 Oct 2021, 04:42)DBAIReaders: Everyone
Keywords: Buffer pool management, cache replacement, machine learning, deep learning, deep reinforcement learning, clustering
TL;DR: This paper proposes a deep reinforcement learning-based approach, DRL-Clusters, to manage the buffer pool for database systems when handling changing workloads.
Abstract: Buffer cache has been widely implemented in database systems to reduce disk I/Os. Existing database systems typically use heuristic-based algorithms for buffer replacement, which cannot dynamically adapt to changing workload patterns. This paper proposes a deep reinforcement learning-based approach, DRL-Clusters, to manage the buffer pool when handling changing workloads. DRL-Clusters can dynamically adapt to different workload patterns without incurring high inference overhead and miss ratio with page re-clustering and continuous interactions with the cache environment. Our evaluation results demonstrate that DRL-Clusters can achieve a lower or comparable miss ratio than the heuristic policies while reducing 13.3% - 26.8% page access overhead under changing workloads.
1 Reply

Loading