A GENERAL SCENARIO-AGNOSTIC REINFORCEMENT LEARNING FOR TRAFFIC SIGNAL CONTROLDownload PDF

Anonymous

22 Sept 2022, 12:38 (modified: 16 Nov 2022, 11:56)ICLR 2023 Conference Blind SubmissionReaders: Everyone
Keywords: reinforcement learning, model generalizability, traffic signal control, smart mobility
Abstract: Reinforcement learning has been recently adopted to revolutionize and optimize traditional traffic signal control systems. Existing methods are either based on a single scenario or multiple independent scenarios, where each scenario has a separate simulation environment with predefined road network topology and traffic signal settings. These models implement training and testing in the same scenario, thus being strictly tied up with the specific setting and sacrificing model generalization heavily. While a few recent models could be trained by multiple scenarios, they require a huge amount of manual labor to label the intersection structure, hindering the model’s generalization. In this work, we aim at a general framework that could eliminate heavy labeling and model a variety of scenarios simultaneously. To this end, we propose a GEneral Scenario-Agnostic (GESA) reinforcement learning framework for traffic signal control with: (1) A general plug-in module to map all different intersections into a unified structure, freeing us from the heavy manual labor to specify the structure of intersections; (2) A unified state and action space to keep the model input and output consistently structured; (3) A large-scale co-training with multiple scenarios, leading to a generic traffic signal control algorithm. In experiments, we demonstrate our algorithm as the first one that can be co-trained with seven different scenarios without manual annotation, and get 17.20% higher rewards than benchmarks. When dealing with a new scenario, our model can still achieve 10.36% higher rewards. The code and scenarios will be released upon acceptance.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Supplementary Material: zip
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Applications (eg, speech processing, computer vision, NLP)
17 Replies

Loading