REG: A Regularization Optimizer for Robust Training Dynamics

11 Sept 2025 (modified: 12 Nov 2025)ICLR 2026 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: optimizer, RACS operator
Abstract: Optimizers are crucial for the efficient training of Large Language Models (LLMs). While AdamW is the de facto standard, recent structure-aware optimizers like Muon have emerged, which regularize gradient updates by operating on entire weight matrices. The Muon optimizer balances the gradient updates along all directions. However, Muon's reliance on the matrix sign function can lead to training instability, exhibits incompatibility when fine-tuning models pre-trained with AdamW. To address these limitations, we propose \textbf{REG}, a novel optimizer that replaces Muon's aggressive matrix sign operator with the Row-and-Column-Scaling (RACS) operator. Theoretically grounded in balancing a matrix, the RACS operator regularizes the update steps in a less drastic manner, making it simpler to implement and more compatible with established training dynamics. Through extensive empirical experiments on LLM training, we demonstrate that our REG optimizer not only achieves superior performance and stability over AdamW, but also maintains consistency with the AdamW training paradigm. This consistency is particularly evident during the fine-tuning stage, where REG optimizer avoids the performance degradation observed with Muon.
Primary Area: applications to computer vision, audio, language, and other modalities
Submission Number: 4003
Loading