Systolic Array Acceleration of Spiking Neural Networks with Application-Independent Split-Time Temporal Coding

22 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: infrastructure, software libraries, hardware, etc.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: spiking-neural-network, machine learning accelerator
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Spiking Neural Networks (SNNs) are brain-inspired computing models with event-driven based low-power operations and unique temporal dynamics. However, spatial and temporal dynamics in SNNs pose a significant overhead in accelerating neural computations and limit the computing capabilities of neuromorphic accelerators. Especially, unstructured sparsity emergent in both space and time, i.e., across neurons and time points, and iterative computations across time points cause a primary bottleneck in data movement. In this work, we propose a novel technique and architecture that allow the exploitation of temporal information compression with structured sparsity and parallelism across time, and significantly improves data movement on a systolic array. We split a full range of temporal domain into several time windows (TWs) where a TW packs multiple time points, and encode the temporal information in each TW with Split-Time Temporal coding (STT) by limiting the number of spikes within a TW up to one. STT enables sparsification and structurization of irregular firing activities and dramatically reduces computational overhead while delivering competitive classification accuracy without a huge drop. To further improve the data reuse, we propose an Integration Through Time (ITT) technique that processes integration steps across different TWs in parallel with a systolic array. The proposed architecture with STT and ITT offers an application-independent solution for spike-based models across various types of layers and networks. The proposed architecture delivers 77X and 60X latency and energy efficiency improvements for different benchmarks on average over a conventional SNN baseline.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6352
Loading