Keywords: scientific machine learning, conservation laws, physically constrained machine learning, partial differential equations, time series forecasting, uncertainty quantification
Abstract: We present ProbHardE2E, a probabilistic forecasting framework that incorporates hard operational/physical constraints and provides uncertainty quantification. Our methodology uses a novel differentiable probabilistic projection layer (DPPL) that can be combined with a wide range of neural network architectures. DPPL allows the model to learn the system in an end-to-end manner, compared to other approaches where constraints are satisfied either through a post-processing step or at inference. ProbHardE2E optimizes a strictly proper scoring rule, without making any distributional assumptions on the target, which enables it to obtain robust distributional estimates (in contrast to existing approaches that generally optimize likelihood-based objectives, which can be biased by their distributional assumptions and model choices); and it can incorporate a range of non-linear constraints (increasing the power of modeling and flexibility). We apply ProbHardE2E in learning partial differential equations with uncertainty estimates and to probabilistic time-series forecasting, showcasing it as a broadly applicable general framework that connects these seemingly disparate domains.
Supplementary Material: zip
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Submission Number: 4181
Loading