SlotFM: A Motion Foundation Model with Slot Attention for Diverse Downstream Tasks

ICLR 2026 Conference Submission13856 Authors

18 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: accelerometer, IMU, foundation models, self-supervised learning, time-series, slot attention
TL;DR: We present a motion foundation model that uses Slot Attention to create an embedding of multiple slots that capture different parts of the signal, achieving strong generalization across diverse accelerometer downstream tasks.
Abstract: Wearable accelerometers are used for a wide range of applications, such as gesture recognition, gait analysis, and sports monitoring. Yet most existing foundation models focus primarily on classifying common daily activities such as locomotion and exercise, limiting their applicability to the broader range of tasks that rely on other signal characteristics. We present SlotFM, an accelerometer foundation model that generalizes across diverse downstream tasks. SlotFM uses Time-Frequency Slot Attention, an extension of Slot Attention that processes both time and frequency representations of the raw signals. It generates multiple small embeddings (slots), each capturing different signal components, enabling task-specific heads to focus on the most relevant parts of the data. We also introduce two loss regularizers that capture local structure and frequency patterns, which improve reconstruction of fine-grained details and helps the embeddings preserve task-relevant information. We evaluate SlotFM on 16 classification and regression downstream tasks that extend beyond standard human activity recognition. It outperforms existing self-supervised approaches on 13 of these tasks and achieves comparable results to the best performing approaches on the remaining tasks. On average, our method yields a 4.5% performance gain, demonstrating strong generalization for sensing foundation models.
Primary Area: foundation or frontier models, including LLMs
Submission Number: 13856
Loading