Discovering Distinctive ``Semantics'' in Super-Resolution NetworksDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Abstract: Image super-resolution (SR) is a representative low-level vision problem. Although deep SR networks have achieved extraordinary success, we are still unaware of their working mechanisms. Specifically, whether SR networks can learn semantic information, or just perform complex mapping function? What hinders SR networks from generalizing to real-world data? These questions not only raise our curiosity, but also influence SR network development. In this paper, we make the primary attempt to answer the above fundamental questions. After comprehensively analyzing the feature representations (via dimensionality reduction and visualization), we successfully discover the distinctive ``semantics'' in SR networks, i.e., deep degradation representations (DDR), which relate to image degradation instead of image content. We show that a well-trained deep SR network is naturally a good descriptor of degradation information. Our experiments also reveal two key factors (adversarial learning and global residual) that influence the extraction of such semantics. We further apply DDR in several interesting applications (such as distortion identification, blind SR and generalization evaluation) and achieve promising results, demonstrating the correctness and effectiveness of our findings.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
16 Replies

Loading