A Primal-Dual Approach to Solving Variational Inequalities with General Constraints

Published: 16 Jan 2024, Last Modified: 18 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Variational Inequaly, optimization, constraints, primal-dual, interior-point method, Monotone operator, last iterate convergence
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: Novel first-order methods for solving constrained variational inequalities with convergence guarantees on monotone variational inequalities.
Abstract: Yang et al. (2023) recently showed how to use first-order gradient methods to solve general variational inequalities (VIs) under a limiting assumption that analytic solutions of specific subproblems are available. In this paper, we circumvent this assumption via a warm-starting technique where we solve subproblems approximately and initialize variables with the approximate solution found at the previous iteration. We prove the convergence of this method and show that the gap function of the last iterate of the method decreases at a rate of $\mathcal{O}(\frac{1}{\sqrt{K}})$ when the operator is $L$-Lipschitz and monotone. In numerical experiments, we show that this technique can converge much faster than its exact counterpart. Furthermore, for the cases when the inequality constraints are simple, we introduce an alternative variant of ACVI and establish its convergence under the same conditions. Finally, we relax the smoothness assumptions in Yang et al., yielding, to our knowledge, the first convergence result for VIs with general constraints that does not rely on the assumption that the operator is $L$-Lipschitz.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: optimization
Submission Number: 6289
Loading