DDAD: A Two-Pronged Adversarial Defense Based on Distributional Discrepancy

ICLR 2025 Conference Submission13588 Authors

28 Sept 2024 (modified: 27 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: adversarial defense, adversarial robustness, accuracy-robustness trade-off
Abstract: Statistical adversarial data detection (SADD) detects whether an upcoming batch contains adversarial examples (AEs) by measuring the distributional discrepancies between clean examples (CEs) and AEs. In this paper, we reveal the potential strength of SADD-based methods by theoretically showing that minimizing distributional discrepancy can help reduce the expected loss on AEs. Nevertheless, despite these advantages, SADD-based methods have a potential limitation: they discard inputs detected as AEs, leading to the loss of clean information within those inputs. To address this limitation, we propose a two-pronged adversarial defense method, named Distributional-Discrepancy-based Adversarial Defense (DDAD). In the training phase, DDAD first optimizes the test power of the maximum mean discrepancy (MMD) to derive MMD-OPT, and then trains a denoiser by minimizing the MMD-OPT between CEs and AEs. In the inference phase, DDAD first leverages MMD-OPT to differentiate CEs and AEs, and then applies a two-pronged process: (1) directly feeding the detected CEs into the classifier, and (2) removing noise from the detected AEs by the distributional-discrepancy-based denoiser. Extensive experiments show that DDAD outperforms current state-of-the-art (SOTA) defense methods by notably improving clean and robust accuracy on CIFAR-10 and ImageNet-1K against adaptive white-box attacks. The code is available at: https://anonymous.4open.science/r/DDAD-DB60.
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13588
Loading