Importance Sampling for Fair Policy SelectionOpen Website

2018 (modified: 10 Nov 2022)IJCAI 2018Readers: Everyone
Abstract: We consider the problem of off-policy policy selection in reinforcement learning: using historical data generated from running one policy to compare two or more policies. We show that approaches based on importance sampling can be unfair---they can select the worse of two policies more often than not. We then give an example that shows importance sampling is systematically unfair in a practically relevant setting; namely, we show that it unreasonably favors shorter trajectory lengths. We then present sufficient conditions to theoretically guarantee fairness. Finally, we provide a practical importance sampling-based estimator to help mitigate the unfairness due to varying trajectory lengths.
0 Replies

Loading