OPTIMAL BINARY QUANTIZATION FOR DEEP NEURAL NETWORKSDownload PDF

25 Sept 2019 (modified: 05 May 2023)ICLR 2020 Conference Blind SubmissionReaders: Everyone
Keywords: Binary Neural Networks, Quantization
Abstract: Quantizing weights and activations of deep neural networks results in significant improvement in inference efficiency at the cost of lower accuracy. A source of the accuracy gap between full precision and quantized models is the quantization error. In this work, we focus on the binary quantization, in which values are mapped to -1 and 1. We introduce several novel quantization algorithms: optimal 2-bits, optimal ternary, and greedy. Our quantization algorithms can be implemented efficiently on the hardware using bitwise operations. We present proofs to show that our proposed methods are optimal, and also provide empirical error analysis. We conduct experiments on the ImageNet dataset and show a reduced accuracy gap when using the proposed optimal quantization algorithms.
Original Pdf: pdf
11 Replies

Loading