OPTIMAL BINARY QUANTIZATION FOR DEEP NEURAL NETWORKS

Anonymous

Sep 25, 2019 Blind Submission readers: everyone Show Bibtex
  • Keywords: Binary Neural Networks, Quantization
  • Abstract: Quantizing weights and activations of deep neural networks results in significant improvement in inference efficiency at the cost of lower accuracy. A source of the accuracy gap between full precision and quantized models is the quantization error. In this work, we focus on the binary quantization, in which values are mapped to -1 and 1. We introduce several novel quantization algorithms: optimal 2-bits, optimal ternary, and greedy. Our quantization algorithms can be implemented efficiently on the hardware using bitwise operations. We present proofs to show that our proposed methods are optimal, and also provide empirical error analysis. We conduct experiments on the ImageNet dataset and show a reduced accuracy gap when using the proposed optimal quantization algorithms.
0 Replies

Loading