An Attentive Approach for Building Partial Reasoning Agents from Pixels

Published: 17 Sept 2024, Last Modified: 17 Sept 2024Accepted by TMLREveryoneRevisionsBibTeXCC BY 4.0
Abstract: We study the problem of building reasoning agents that are able to generalize in an effective manner. Towards this goal, we propose an end-to-end approach for building model-based reinforcement learning agents that dynamically focus their reasoning to the relevant aspects of the environment: after automatically identifying the distinct aspects of the environment, these agents dynamically filter out the relevant ones and then pass them to their simulator to perform partial reasoning. Unlike existing approaches, our approach works with pixel-based inputs and it allows for interpreting the focal points of the agent. Our quantitative analyses show that the proposed approach allows for effective generalization in high-dimensional domains with raw observational inputs. We also perform ablation analyses to validate of design choices. Finally, we demonstrate through qualitative analyses that our approach actually allows for building agents that focus their reasoning on the relevant aspects of the environment.
Submission Length: Regular submission (no more than 12 pages of main content)
Assigned Action Editor: ~Erin_J_Talvitie1
Submission Number: 2836
Loading