Enhancing Molecular Property Predictions by Learning from Bond Modelling and Interactions

ICLR 2026 Conference Submission12766 Authors

18 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Molecule Representation Learning, Bond Modelling, Molecule Property Prediction
Abstract: Molecule representation learning is crucial for understanding and predicting molecular properties. However, conventional atom-centric models, which treat chemical bonds merely as pairwise interactions, often overlook complex bond-level phenomena like resonance and stereoselectivity. This oversight limits their predictive accuracy for nuanced chemical behaviors. To address this limitation, we introduce \textbf{DeMol}, a dual-graph framework whose architecture is motivated by a rigorous information-theoretic analysis demonstrating the information gain from a bond-centric perspective. DeMol explicitly models molecules through parallel atom-centric and bond-centric channels. These are synergistically fused by multi-scale Double-Helix Blocks designed to learn intricate atom-atom, atom-bond, and bond-bond interactions. The framework's geometric consistency is further enhanced by a regularization term based on covalent radii to enforce chemically plausible structures. Comprehensive evaluations on diverse benchmarks, including PCQM4Mv2, OC20 IS2RE, QM9, and MoleculeNet, show that DeMol establishes a new state-of-the-art, outperforming existing methods. These results confirm the superiority of explicitly modelling bond information and interactions, paving the way for more robust and accurate molecular machine learning.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Submission Number: 12766
Loading