Sound and Complete Causal Identification with Latent Variables Given Local Background KnowledgeDownload PDF

Published: 31 Oct 2022, 18:00, Last Modified: 14 Dec 2022, 06:04NeurIPS 2022 AcceptReaders: Everyone
Keywords: background knowledge, partial ancestral graph
TL;DR: We study what causal relations are identifiable given local background knowledge in the presence of latent confounders.
Abstract: Great efforts have been devoted to causal discovery from observational data, and it is well known that introducing some background knowledge attained from experiments or human expertise can be very helpful. However, it remains unknown that \emph{what causal relations are identifiable given background knowledge in the presence of latent confounders}. In this paper, we solve the problem with sound and complete orientation rules when the background knowledge is given in a \emph{local} form. Furthermore, based on the solution to the problem, this paper proposes a general active learning framework for causal discovery in the presence of latent confounders, with its effectiveness and efficiency validated by experiments.
Supplementary Material: pdf
11 Replies

Loading