Meta-Adapters: Parameter Efficient Few-shot Fine-tuning through Meta-LearningDownload PDF

Published: 16 May 2022, Last Modified: 05 May 2023AutoML-Conf 2022 (Main Track)Readers: Everyone
Abstract: Consistent improvements in the representational capacity of large pre-trained transformers has made it increasingly viable to serve these models as shared priors that can be fine-tuned on a large number of downstream tasks. However, fine-tuning the entire model for every task of interest makes a copy of all the model parameters, rendering such scenarios highly impractical. Recently introduced Adapter methods propose a promising alternative, one where only a small number of additional parameters are introduced per task specifically for fine-tuning. However, Adapters often require large amounts of task-specific data for good performance and don't work well in data-scarce few-shot scenarios. In this paper, we approach parameter-efficient fine-tuning in few-shot settings from a meta-learning perspective. We introduce Meta-Adapters, which are small blocks of meta-learned adapter layers inserted in a pre-trained model that re-purpose a frozen pre-trained model into a parameter-efficient few-shot learner. Meta-Adapters perform competitively with state-of-the-art few-shot learning methods that require full fine-tuning, while only fine-tuning 0.6% of the parameters. We evaluate Meta-Adapters along with multiple transfer learning baselines on an evaluation suite of 17 classification tasks and find that they improve few-shot accuracy by a large margin over competitive parameter-efficient methods, while requiring significantly lesser parameters for fine-tuning. Moreover, when comparing few-shot prompting of GPT-3 against few-shot fine-tuning with Meta-Adapters, we find that Meta-Adapters perform competitively while working with pre-trained transformers that are many orders of magnitude (1590x) smaller in size than GPT-3.
Keywords: meta-learning, few-shot learning, natural language processing, self-supervised learning, parameter-efficient learning, adapter, fine-tuning
One-sentence Summary: Meta-Adapters are blocks of meta-learned layers that condition adapter-based fine-tuning of pre-trained models to make it more efficient in few-shot settings. We achieve competitive results to full fine-tuning while fine-tuning only 0.6% parameters.
Track: Main track
Reproducibility Checklist: Yes
Broader Impact Statement: Yes
Paper Availability And License: Yes
Code Of Conduct: Yes
Reviewers: Trapit Bansal, tbansal@cs.umass.edu
CPU Hours: 0
GPU Hours: 0
TPU Hours: 0
Main Paper And Supplementary Material: pdf
6 Replies

Loading