RvS: What is Essential for Offline RL via Supervised Learning?Download PDF

Published: 28 Jan 2022, Last Modified: 17 Sept 2023ICLR 2022 PosterReaders: Everyone
Keywords: reinforcement learning, deep reinforcement learning, offline reinforcement learning
Abstract: Recent work has shown that supervised learning alone, without temporal difference (TD) learning, can be remarkably effective for offline RL. When does this hold true, and which algorithmic components are necessary? Through extensive experiments, we boil supervised learning for offline RL down to its essential elements. In every environment suite we consider, simply maximizing likelihood with a two-layer feedforward MLP is competitive with state-of-the-art results of substantially more complex methods based on TD learning or sequence modeling with Transformers. Carefully choosing model capacity (e.g., via regularization or architecture) and choosing which information to condition on (e.g., goals or rewards) are critical for performance. These insights serve as a field guide for practitioners doing Reinforcement Learning via Supervised Learning (which we coin RvS learning). They also probe the limits of existing RvS methods, which are comparatively weak on random data, and suggest a number of open problems.
One-sentence Summary: Experimentally evaluating when and why supervised learning solves offline RL
Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 4 code implementations](https://www.catalyzex.com/paper/arxiv:2112.10751/code)
19 Replies