Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: NeRF, Pretraining, Mask-Based Modeling
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Most Neural Radiance Fields (NeRFs) exhibit limited generalization capabilities,which restrict their applicability in representing multiple scenes using a single model. To address this problem, existing generalizable NeRF methods simply condition the model on image features. These methods still struggle to learn precise global representations over diverse scenes since they lack an effective mechanism for interacting among different points and views. In this work, we unveil that 3D implicit representation learning can be significantly improved by mask-based modeling. Specifically, we propose **m**asked **r**ay and **v**iew **m**odeling for generalizable **NeRF** (**MRVM-NeRF**), which is a self-supervised pretraining target to predict complete scene representations from partially masked features along each ray. With this pretraining target, MRVM-NeRF enables better use of correlations across different rays and views as the geometry priors, which thereby strengthens the capability of capturing intricate details within the scenes and boosts the generalization capability across different scenes. Extensive experiments demonstrate the effectiveness of our proposed MRVM-NeRF on both synthetic and real-world datasets, qualitatively and quantitatively. Besides, we also conduct experiments to show the compatibility of our proposed method with various backbones and its superiority under few-shot cases.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: representation learning for computer vision, audio, language, and other modalities
Submission Number: 219
Loading