Keywords: Operator Learning, Fourier Linear Operators
TL;DR: We bound the statistical, discretization and truncation errors that occur while learning the linear core of the Fourier Neural Operator architechture.
Abstract: We investigate the problem of learning operators between function spaces, focusing on the linear part of a layer in the Fourier Neural Operator architecture. First, we identify three main errors that occur during the learning process: statistical error due to finite sample size, truncation error from finite rank approximation of the operator, and discretization error from handling functional data on a finite grid of domain points. Finally, we analyze a Discrete Fourier Transform (DFT) based least squares estimator, establishing both upper and lower bounds on the aforementioned errors.
Primary Area: learning theory
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3272
Loading