Daniel Hernandez Diaz, Antonio Khalil Moretti, Ziqiang Wei, Shreya Saxena, John Cunningham, Liam Paninski

Sep 27, 2018 ICLR 2019 Conference Blind Submission readers: everyone Show Bibtex
  • Abstract: Latent variable models have been widely applied for the analysis and visualization of large datasets. In the case of sequential data, closed-form inference is possible when the transition and observation functions are linear. However, approximate inference techniques are usually necessary when dealing with nonlinear evolution and observations. Here, we propose a novel variational inference framework for the explicit modeling of time series, Variational Inference for Nonlinear Dynamics (VIND), that is able to uncover nonlinear observation and latent dynamics from sequential data. The framework includes a structured approximate posterior, and an algorithm that relies on the fixed-point iteration method to find the best estimate for latent trajectories. We apply the method to several datasets and show that it is able to accurately infer the underlying dynamics of these systems, in some cases substantially outperforming state-of-the-art methods.
  • Keywords: variational inference, time series, nonlinear dynamics, neuroscience
  • TL;DR: We propose a new variational inference algorithm for time series and a novel variational family endowed with nonlinear dynamics.
0 Replies