Deep Fully Convolutional Network for MR FingerprintingDownload PDF

11 Apr 2019, 16:12 (modified: 13 Jul 2022, 20:47)MIDL Abstract 2019Readers: Everyone
Keywords: Magnetic Resonance Fingerprinting, Deep Learning
Abstract: This work proposes an end-to-end deep fully convolutional neural network for MRF reconstruction (MRF-FCNN), which firstly employs linear dimensionality reduction and then uses a neural network to project the data into the tissue parameters. The MRF dictionary is only used for training the network and not during image reconstruction. We show that MRF-FCNN is capable of achieving accuracy comparable to the ground-truth maps thanks to capturing spatio-temporal data structures without a need for the non-scalable dictionary matching step used in the baseline reconstructions.
Code Of Conduct: I have read and accept the code of conduct.
Remove If Rejected: Remove submission from public view if paper is rejected.
3 Replies