Abstract: Oversmoothing is a common phenomenon in a wide range of Graph Neural Networks (GNNs) and Transformers, where performance degenerates as the layer goes deeper. Instead of characterizing oversmoothing from the view of complete collapse in which representations converge to a single point, we dive into a more general perspective dimensional collapse in which representations lie in a narrow cone. Accordingly, inspired by the power of contrastive learning in preventing dimensional collapse, we propose a novel normalization layer ContraNorm. Intuitively, ContraNorm implicitly shatters representations in the embedding space, leading to a more uniform distribution and slighter dimensional collapse. On the theoretical analysis, we prove that ContraNorm can alleviate both complete collapse and dimensional collapse under some conditions. Our proposed normalization layer can be easily inserted into GNNs and Transformers with negligible parameter overhead. Experiments on various real-world datasets verify the effectiveness of our method.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/contranorm-a-contrastive-learning-perspective/code)
19 Replies
Loading