Domain-Invariant Prompt Learning for Vision-Language Models

Published: 05 Mar 2025, Last Modified: 14 Apr 2025SCOPE - ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Track: Main paper track (up to 5 pages excluding references and appendix)
Keywords: Prompt learning, Soft-prompting, Prompt tuning, Domain-invariant prompts, Domain generalization, Domain shifts, Adversarial training
Abstract: Large pre-trained vision-language models like CLIP have transformed computer vision by aligning images and text in a shared feature space, enabling robust zero-shot transfer via prompting. Soft-prompting, such as Context Optimization (CoOp), effectively adapts these models for downstream recognition tasks by learning a set of context vectors. However, CoOp lacks explicit mechanisms for handling domain shifts across unseen distributions. To address this, we propose Domain-invariant Context Optimization (DiCoOp), an extension of CoOp optimized for domain generalization. By employing an adversarial training approach, DiCoOp forces the model to learn domain-invariant prompts while preserving discriminative power for classification. Experimental results show that DiCoOp consistently surpasses CoOp in domain generalization tasks across diverse visual domains.
Anonymization: This submission has been anonymized for double-blind review via the removal of identifying information such as names, affiliations, and identifying URLs.
Submission Number: 38
Loading