SRHand: Super-Resolving Hand Images and 3D Shapes via View/Pose-aware Neural Image Representations and Explicit Meshes

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: 3D Reconstruction, Multi-view Images, Super-resolution, Consistency
TL;DR: 3D reconstruction of hand considering consistency from constrained resolution
Abstract: Reconstructing detailed hand avatars plays a crucial role in various applications. While prior works have focused on capturing high-fidelity hand geometry, they heavily rely on high-resolution multi-view image inputs and struggle to generalize on low-resolution images. Multi-view image super-resolution methods have been proposed to enforce 3D view consistency. These methods, however, are limited to static objects/scenes with fixed resolutions and are not applicable to articulated deformable hands. In this paper, we propose SRHand (Super-Resolution Hand), the method for reconstructing detailed 3D geometry as well as textured images of hands from low-resolution images. SRHand leverages the advantages of implicit image representation with explicit hand meshes. Specifically, we introduce a geometric-aware implicit image function (GIIF) that learns detailed hand prior by upsampling the coarse input images. By jointly optimizing the implicit image function and explicit 3D hand shapes, our method preserves multi-view and pose consistency among upsampled hand images, and achieves fine-detailed 3D reconstruction (wrinkles, nails). In experiments using the InterHand2.6M and Goliath datasets, our method significantly outperforms state-of-the-art image upsampling methods adapted to hand datasets, and 3D hand reconstruction methods, quantitatively and qualitatively. The code will be publicly available.
Supplementary Material: zip
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 20152
Loading