Keywords: formula, numerical reasoning, question answering
TL;DR: Evaluation of LLMs on a new QA dataset that requires numerical reasoning with formulas in the physics domain.
Abstract: The application of formulas is a fundamental ability of humans when addressing numerical reasoning problems. However, existing numerical reasoning datasets seldom indicate explicitly the formulas employed during the reasoning steps. To bridge this gap, we construct a dataset for formula-based numerical reasoning called FormulaReasoning, which consists of 5,420 reasoning-based questions. We employ it to conduct evaluations of LLMs with size ranging from 7B to over 100B parameters utilizing zero-shot and few-shot chain-of-thought methods, and we further explore using retrieval-augmented LLMs provided with an external formula database associated with our dataset. We also experiment with supervised methods where we divide the reasoning process into formula generation, parameter extraction, and numerical calculation, and perform data augmentation. Our empirical findings underscore the significant potential for improvement in existing models when applied to our challenging, formula-driven FormulaReasoning.
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6649
Loading