Bag of Tricks for Unsupervised Text-to-SpeechDownload PDF

Published: 01 Feb 2023, Last Modified: 28 Feb 2023ICLR 2023 posterReaders: Everyone
Keywords: speech synthesis, unsupervised learning
Abstract: Unsupervised text-to-speech (TTS) aims to train TTS models for a specific language without any paired speech-text training data in that language. Existing methods either use speech and corresponding pseudo text generated by an unsupervised automatic speech recognition (ASR) model as training data, or employ the back-translation technique. Though effective, they suffer from low robustness to low-quality data and heavy dependence on the lexicon of a language that is sometimes unavailable, leading to difficulty in convergence, especially in low-resource language scenarios. In this work, we introduce a bag of tricks to enable effective unsupervised TTS. Specifically, 1) we carefully design a voice conversion model to normalize the variable and noisy information in the low-quality speech data while preserving the pronunciation information; 2) we employ the non-autoregressive TTS model to overcome the robustness issue; and 3) we explore several tricks applied in back-translation, including curriculum learning, length augmentation and auxiliary supervised loss to stabilize the back-translation and improve its effectiveness. Through experiments, it has been demonstrated that our method achieves better intelligibility and audio quality than all previous methods, and that these tricks are very essential to the performance gain.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Applications (eg, speech processing, computer vision, NLP)
TL;DR: We introduce a bag of tricks to enable effective unsupervised TTS using low-quality and multi-speaker unpaired data.
Supplementary Material: zip
7 Replies