Towards Practical Second Order Optimization for Deep LearningDownload PDF

28 Sep 2020 (modified: 05 Mar 2021)ICLR 2021 Conference Blind SubmissionReaders: Everyone
  • Keywords: large scale distributed deep learning, second order optimization, bert, resnet, criteo, transformer, machine translation
  • Abstract: Optimization in machine learning, both theoretical and applied, is presently dominated by first-order gradient methods such as stochastic gradient descent. Second-order optimization methods, that involve second derivatives and/or second order statistics of the data, are far less prevalent despite strong theoretical properties, due to their prohibitive computation, memory and communication costs. In an attempt to bridge this gap between theoretical and practical optimization, we present a scalable implementation of a second-order preconditioned method (concretely, a variant of full-matrix Adagrad), that along with several critical algorithmic and numerical improvements, provides significant convergence and wall-clock time improvements compared to conventional first-order methods on state-of-the-art deep models. Our novel design effectively utilizes the prevalent heterogeneous hardware architecture for training deep models, consisting of a multicore CPU coupled with multiple accelerator units. We demonstrate superior performance compared to state-of-the-art on very large learning tasks such as machine translation with Transformers, language modeling with BERT, click-through rate prediction on Criteo, and image classification on ImageNet with ResNet-50.
  • One-sentence Summary: We outperform state-of-the-art first-order optimizers on a variety of tasks using a distributed second-order method.
  • Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
  • Reviewed Version (pdf):
11 Replies