Forced to Learn: Discovering Disentangled Representations Without Exhaustive LabelsDownload PDF

01 Oct 2023 (modified: 30 Mar 2017)ICLR 2017 workshop submissionReaders: Everyone
TL;DR: A novel loss component that leads to substantial improvement of KMeans clustering over the learned representations.
Abstract: Learning a better representation with neural networks is a challenging problem, which was tackled extensively from different prospectives in the past few years. In this work, we focus on learning a representation that could be used for clustering and introduce a novel loss component that substantially improves the quality of produced clusters, is simple to apply to an arbitrary cost function, and does not require a complicated training procedure.
5 Replies