Manifold Alignment via Feature CorrespondenceDownload PDF

27 Sept 2018 (modified: 05 May 2023)ICLR 2019 Conference Blind SubmissionReaders: Everyone
Abstract: We propose a novel framework for combining datasets via alignment of their associated intrinsic dimensions. Our approach assumes that the two datasets are sampled from a common latent space, i.e., they measure equivalent systems. Thus, we expect there to exist a natural (albeit unknown) alignment of the data manifolds associated with the intrinsic geometry of these datasets, which are perturbed by measurement artifacts in the sampling process. Importantly, we do not assume any individual correspondence (partial or complete) between data points. Instead, we rely on our assumption that a subset of data features have correspondence across datasets. We leverage this assumption to estimate relations between intrinsic manifold dimensions, which are given by diffusion map coordinates over each of the datasets. We compute a correlation matrix between diffusion coordinates of the datasets by considering graph (or manifold) Fourier coefficients of corresponding data features. We then orthogonalize this correlation matrix to form an isometric transformation between the diffusion maps of the datasets. Finally, we apply this transformation to the diffusion coordinates and construct a unified diffusion geometry of the datasets together. We show that this approach successfully corrects misalignment artifacts, and allows for integrated data.
Keywords: graph signal processing, graph alignment, manifold alignment, spectral graph wavelet transform, diffusion geometry, harmonic analysis
TL;DR: We propose a method for aligning the latent features learned from different datasets using harmonic correlations.
4 Replies

Loading