Spreading vectors for similarity searchDownload PDF

Published: 21 Dec 2018, Last Modified: 21 Apr 2024ICLR 2019 Conference Blind SubmissionReaders: Everyone
Abstract: Discretizing floating-point vectors is a fundamental step of modern indexing methods. State-of-the-art techniques learn parameters of the quantizers on training data for optimal performance, thus adapting quantizers to the data. In this work, we propose to reverse this paradigm and adapt the data to the quantizer: we train a neural net whose last layers form a fixed parameter-free quantizer, such as pre-defined points of a sphere. As a proxy objective, we design and train a neural network that favors uniformity in the spherical latent space, while preserving the neighborhood structure after the mapping. For this purpose, we propose a new regularizer derived from the Kozachenko-Leonenko differential entropy estimator and combine it with a locality-aware triplet loss. Experiments show that our end-to-end approach outperforms most learned quantization methods, and is competitive with the state of the art on widely adopted benchmarks. Further more, we show that training without the quantization step results in almost no difference in accuracy, but yields a generic catalyser that can be applied with any subsequent quantization technique.
Keywords: dimensionality reduction, similarity search, indexing, differential entropy
TL;DR: We learn a neural network that uniformizes the input distribution, which leads to competitive indexing performance in high-dimensional space
Code: [![github](/images/github_icon.svg) facebookresearch/spreadingvectors](https://github.com/facebookresearch/spreadingvectors) + [![Papers with Code](/images/pwc_icon.svg) 1 community implementation](https://paperswithcode.com/paper/?openreview=SkGuG2R5tm)
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/arxiv:1806.03198/code)
12 Replies