Stabilizing Adversarial Nets with Prediction Methods


Nov 03, 2017 (modified: Nov 03, 2017) ICLR 2018 Conference Blind Submission readers: everyone Show Bibtex
  • Abstract: Adversarial neural networks solve many important problems in data science, but are notoriously difficult to train. These difficulties come from the fact that optimal weights for adversarial nets correspond to saddle points, and not minimizers, of the loss function. The alternating stochastic gradient methods typically used for such problems do not reliably converge to saddle points, and when convergence does happen it is often highly sensitive to learning rates. We propose a simple modification of stochastic gradient descent that stabilizes adversarial networks. We show, both in theory and practice, that the proposed method reliably converges to saddle points. This makes adversarial networks less likely to "collapse," and enables faster training with larger learning rates.
  • TL;DR: We present a simple modification to the alternating SGD method, called a prediction step, that improves the stability of adversarial networks.
  • Keywords: adversarial networks, optimization