Keywords: Digital Pathology, GANs, Guided Domain Translation, Immunofluorescence
Abstract: Unsupervised and unpaired domain translation using generative adversarial neural networks, and more precisely CycleGAN, is state of the art for the stain translation of histopathology images. It often, however, suffers from the presence of cycle-consistent but non structure-preserving errors. We propose an alternative approach to the set of methods which, relying on segmentation consistency, enable the preservation of pathology structures. Focusing on immunohistochemistry (IHC) and multiplexed immunofluorescence (mIF), we introduce a simple yet effective guidance scheme as a loss function that leverages the consistency of stain translation with stain isolation. Qualitative and quantitative experiments show the ability of the proposed approach to improve translation between the two domains
Registration: I acknowledge that acceptance of this work at MIDL requires at least one of the authors to register and present the work during the conference.
Authorship: I confirm that I am the author of this work and that it has not been submitted to another publication before.
Paper Type: novel methodological ideas without extensive validation
Primary Subject Area: Transfer Learning and Domain Adaptation
Secondary Subject Area: Application: Histopathology
Confidentiality And Author Instructions: I read the call for papers and author instructions. I acknowledge that exceeding the page limit and/or altering the latex template can result in desk rejection.
1 Reply
Loading