Solving Continual Learning via Problem DecompositionDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Continual learning, lifelong learning
Abstract: This paper is concerned with class incremental learning (CIL) in continual learning (CL). CIL is the popular continual learning paradigm in which a system receives a sequence of tasks with different classes in each task and is expected to learn to predict the class of each test instance without given any task related information for the instance. Although many techniques have been proposed to solve CIL, it remains to be highly challenging due to the difficulty of dealing with catastrophic forgetting (CF). This paper starts from the first principle and proposes a novel method to solve the problem. The definition of CIL reveals that the problem can be decomposed into two probabilities: within-task prediction probability and task-id prediction probability. This paper proposes an effective technique to estimate these two probabilities based on the estimation of feature distributions in the latent space using incremental PCA and Mahalanobis distance. The proposed method does not require a memory buffer to save replay data and it outperforms strong baselines including replay-based methods.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Supplementary Material: zip
15 Replies