A Meta Understanding of Meta-Learning


May 16, 2019 Blind Submission readers: everyone
  • Keywords: meta-learning, few-shot learning, supervised learning
  • Abstract: Recent years have witnessed an abundance of new publications and approaches on meta-learning. This community-wide enthusiasm has sparked great insights but has also created a plethora of seemingly different frameworks, which can be hard to compare and evaluate. In this paper, we aim to provide a single principled, unifying framework that draws a close connection between meta-learning and traditional supervised learning. By treating pairs of task-specific data sets and trained models as (feature, label) samples, we can reduce many meta-learning algorithms to instances of supervised learning. This view not only unifies meta-learning into an intuitive and practical framework but also allows us to transfer insights from supervised learning directly to improve meta-learning. For example, we obtain a better understanding of generalization properties, and we can readily transfer well-understood techniques, such as model ensemble, pre-training, joint training, data augmentation, and even nearest neighbor based methods. We provide an intuitive analogy of these methods in the context of meta-learning and show that they give rise to significant improvements in model performance.
0 Replies