Autostacker: an Automatic Evolutionary Hierarchical Machine Learning System

Anonymous

Nov 03, 2017 (modified: Nov 03, 2017) ICLR 2018 Conference Blind Submission readers: everyone Show Bibtex
  • Abstract: This work provides an automatic machine learning (AutoML) modelling architecture called Autostacker. Autostacker improves the prediction accuracy of machine learning baselines by utilizing an innovative hierarchical stacking architecture and an efficient parameter search algorithm. Neither prior domain knowledge about the data nor feature preprocessing is needed. We significantly reduce the time of AutoML with a naturally inspired algorithm - Parallel Hill Climbing (PHC). By parallelizing PHC, Autostacker can provide candidate pipelines with sufficient prediction accuracy within a short amount of time. These pipelines can be used as is or as a starting point for human experts to build on. By focusing on the modelling process, Autostacker breaks the tradition of following fixed order pipelines by exploring not only single model pipeline but also innovative combinations and structures. As we will show in the experiment section, Autostacker achieves significantly better performance both in terms of test accuracy and time cost comparing with human initial trials and recent popular AutoML system.
  • TL;DR: Automate machine learning system with efficient search algorithm and innovative structure to provide better model baselines.
  • Keywords: Machine Learning, AutoML

Loading