Keywords: Phase Retrieval, Gradient Descent, Global Convergence, Benign Landscape, Sample Complexity, Random Initialization
TL;DR: This paper proves the global convergence of gradient descent with random initialization for phase retrieval under optimal sample complexity
Abstract: This paper addresses the phase retrieval problem, which aims to recover a signal vector $x^{\natural}$ from $m$ measurements $y_i=|\langle a_i,x^{\natural}\rangle|^2$, $i=1,\ldots,m$. A standard approach is to solve a nonconvex least squares problem using gradient descent with random initialization, which is known to work efficiently given a sufficient number of measurements. However, whether $O(n)$ measurements suffice for gradient descent to recover the ground truth efficiently has remained an open question. Prior work has established that $O(n{\rm poly}(\log n))$ measurements are sufficient. In this paper, we resolve this open problem by proving that $m=O(n)$ Gaussian random measurements are sufficient to guarantee, with high probability, that the objective function has a benign global landscape. This sample complexity is optimal because at least $\Omega(n)$ measurements are required for exact recovery. The landscape result allows us to further show that gradient descent with a constant step size converges to the ground truth from almost any initial point.
Supplementary Material: zip
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7385
Loading