Visual Structures Help Visual Reasoning: Addressing the Binding Problem in LVLMs

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Visual Reasoning, Large Vision-Language Models, Cognitive Science, Binding Problem
TL;DR: VISER adds simple visual scaffolds and spatial prompts to guide Vision-Language Models toward sequential processing, improving performance on visual reasoning tasks like counting, scene description, visual search, and spatial reasoning.
Abstract: Despite progress in Large Vision-Language Models (LVLMs), their capacity for visual reasoning is often limited by the binding problem: the failure to reliably associate perceptual features with their correct visual referents. This limitation underlies persistent errors in tasks such as counting, visual search, scene description, and spatial relationship understanding. A key factor is that current LVLMs process visual features largely in parallel, lacking mechanisms for spatially grounded, serial attention. This paper introduces Visual Input Structure for Enhanced Reasoning (VISER), a simple, effective method that augments visual inputs with low-level spatial structures and pairs them with a textual prompt that encourages sequential, spatially-aware parsing. We empirically demonstrate substantial performance improvements across core visual reasoning tasks, using only a single-query inference. Specifically, VISER improves GPT-4o performance on visual search, counting, and spatial relationship tasks by 25.0%, 26.8%, and 9.5%, respectively, and reduces edit distance error in scene description by 0.32 on 2D datasets. Furthermore, we find that the visual modification is essential for these gains; purely textual strategies, including Chain-of-Thought prompting, are insufficient and can even degrade performance. VISER underscores the importance of visual input design over purely linguistically based reasoning strategies and suggests that visual structuring is a powerful and general approach for enhancing compositional and spatial reasoning in LVLMs.
Primary Area: Applications (e.g., vision, language, speech and audio, Creative AI)
Submission Number: 27429
Loading