Keywords: Text-to-image Model, Alignment, Safeguard
Abstract: Text-to-image models can generate harmful images when presented with unsafe prompts, posing significant safety and societal risks. Alignment methods aim to modify these models to ensure they generate only non-harmful images, even when exposed to unsafe prompts. A typical text-to-image model comprises two main components: 1) a text encoder and 2) a diffusion module. Existing alignment methods mainly focus on modifying the diffusion module to prevent harmful image generation. However, this often significantly impacts the model’s behavior for safe prompts, causing substantial quality degradation of generated images. In this work, we propose SafeText, a novel alignment method that fine-tunes the text encoder rather than the diffusion module. By adjusting the text encoder, SafeText significantly alters the embedding vectors for unsafe prompts, while minimally affecting those for safe prompts. As a result, the diffusion module generates non-harmful images for unsafe prompts while preserving the quality of images for safe prompts. We evaluate SafeText on multiple datasets of safe and unsafe prompts, including those generated through jailbreak attacks. Our results show that SafeText effectively prevents harmful image generation with minor impact on the images for safe prompts, and SafeText outperforms six existing alignment methods. We will publish our code and data after paper acceptance.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7858
Loading