Keywords: Reinforcement learning, Policy optimization, Long-horizon agent, Hierarchical group
Abstract: Group-based reinforcement learning (RL), such as GRPO, has advanced the capabilities of large language models on long-horizon agentic tasks. To enable more fine-grained policy updates, recent research has increasingly shifted toward stepwise group-based policy optimization, which treats each step in a rollout trajectory independently while using a memory module to retain historical context. However, we find a key issue in estimating stepwise relative advantages, namely context inconsistency, where steps within the same group may differ in their historical contexts. Empirically, we reveal that this issue can lead to severely biased advantage estimation, thereby degrading policy optimization significantly. To address the issue, in this paper, we propose Hierarchical-of-Groups Policy Optimization (HGPO) for long-horizon agentic tasks. Specifically, within a group of rollout trajectories, HGPO assigns each step to multiple hierarchical groups according to the consistency of historic contexts. Then, for each step, HGPO computes distinct advantages within each group and aggregates them with an adaptive weighting scheme. In this way, HGPO can achieve a favorable bias-variance trade-off in stepwise advantage estimation, without extra models or rollouts. Evaluations on two challenging agentic tasks, ALFWorld and WebShop with Qwen2.5-1.5B-Instruct and Qwen2.5-7B-Instruct, show that HGPO significantly outperforms existing agentic RL methods under the same computational constraints.
Supplementary Material: zip
Primary Area: reinforcement learning
Submission Number: 15751
Loading