Rejuvenating Cross-Entropy Loss in Knowledge Distillation for Recommender Systems

ICLR 2026 Conference Submission15021 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Knowledge Distillation, Recommender System, Model Compression, Cross-Entropy
Abstract: This paper analyzes Cross-Entropy (CE) loss in knowledge distillation (KD) for recommender systems. KD for recommender systems targets at distilling rankings, especially among items most likely to be preferred, and can only be computed on a small subset of items. Considering these features, we reveal the connection between CE loss and NDCG in the field of KD. We prove that when performing KD on an item subset, minimizing CE loss maximizes the lower bound of NDCG, only if an assumption of closure is satisfied. It requires that the item subset consists of the student's top items. However, this contradicts our goal of distilling rankings on the teacher's top items. We empirically demonstrate the vast gap between these two kinds of top items. To bridge the gap between our goal and theoretical support, we propose Rejuvenated Cross-Entropy for Knowledge Distillation (RCE-KD). It splits the top items given by the teacher into two subsets based on whether or not it is ranked high by the student. For the subset that defies the condition, a sampling strategy is devised to use teacher-student collaboration to approximate our assumption of closure. We also combine the losses on the two subsets adaptively. Extensive experiments demonstrate the effectiveness of our method. Our code is available at https://anonymous.4open.science/r/RCE-KD.
Primary Area: other topics in machine learning (i.e., none of the above)
Submission Number: 15021
Loading