Mean-Variance Efficient Reinforcement Learning by Expected Quadratic Utility MaximizationDownload PDF

12 Oct 2021, 19:37 (modified: 25 Nov 2021, 13:23)Deep RL Workshop NeurIPS 2021Readers: Everyone
Keywords: Reinforcement learning, Mean-variance tradeoff
Abstract: In reinforcement learning (RL) for sequential decision making under uncertainty, existing methods proposed for considering mean-variance (MV) trade-off suffer from computational difficulties in computation of the gradient of the variance term. In this paper, we aim to obtain MV-efficient policies that achieve Pareto efficiency regarding MV trade-off. To achieve this purpose, we train an agent to maximize the expected quadratic utility function, in which the maximizer corresponds to the Pareto efficient policy. Our approach does not suffer from the computational difficulties because it does not include gradient estimation of the variance. In experiments, we confirm the effectiveness of our proposed methods.
0 Replies