Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers

Published: 18 Jun 2024, Last Modified: 16 Jul 2024LCFM 2024EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Length Generalization, Transformers, Position Coupling, Positional Encoding, Out-of-distribution Generalization, Arithmetic Tasks, Algorithmic Tasks
TL;DR: To tackle the length generalization problem of Transformers, we inject the structure of the task into the decoder-only Transformer by assigning the same position IDs to relevant tokens.
Abstract: Even for simple arithmetic tasks like integer addition, it is challenging for Transformers to generalize to longer sequences than those encountered during training. To tackle this problem, we propose position coupling, a simple yet effective method that directly embeds the structure of the tasks into the positional encoding of a (decoder-only) Transformer. Taking a departure from the vanilla absolute position mechanism assigning unique position IDs to each of the tokens, we assign the same position IDs to two or more "relevant" tokens; for integer addition tasks, we regard digits of the same significance as in the same position. On the empirical side, we show that with the proposed position coupling, a small (1-layer) Transformer trained on 1 to 30-digit additions can generalize up to *200-digit* additions (6.67x of the trained length). On the theoretical side, we prove that a 1-layer Transformer with coupled positions can solve the addition task involving exponentially many digits, whereas any 1-layer Transformer without positional information cannot entirely solve it. We also demonstrate that position coupling can be applied to other algorithmic tasks such as Nx2 multiplication, copy/reverse, and a two-dimensional task.
Submission Number: 14
Loading