Generalized Contrastive Learning for Universal Multimodal Retrieval

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: multimodal Retrieval, unified representation space, generalized contrastive learning
TL;DR: The paper introduces Generalized Contrastive Learning (GCL), a novel loss function that enhances multimodal retrieval performance by leveraging existing image-caption datasets.
Abstract: Despite their consistent performance improvements, cross-modal retrieval models (e.g., CLIP) show degraded performances with retrieving keys composed of fused image-text modality (e.g., Wikipedia pages with both images and text). To address this critical challenge, multimodal retrieval has been recently explored to develop a unified single retrieval model capable of retrieving keys across diverse modality combinations. A common approach involves constructing new composed sets of image-text triplets (e.g., retrieving a pair of image and text given a query image). However, such an approach requires careful curation to ensure the dataset quality and fails to generalize to unseen modality combinations. To overcome these limitations, this paper proposes Generalized Contrastive Learning (GCL), a novel loss formulation that improves multimodal retrieval performance without the burdensome need for new dataset curation. Specifically, GCL operates by enforcing contrastive learning across all modalities within a mini-batch, utilizing existing image-caption paired datasets to learn a unified representation space. We demonstrate the effectiveness of GCL by showing consistent performance improvements on off-the-shelf multimodal retrieval models (e.g., VISTA, CLIP, and TinyCLIP) using the M-BEIR, MMEB, and CoVR benchmarks.
Supplementary Material: zip
Primary Area: Applications (e.g., vision, language, speech and audio, Creative AI)
Submission Number: 4450
Loading