Confirmation: our paper adheres to reproducibility best practices. In particular, we confirm that all important details required to reproduce results are described in the paper,, the authors agree to the paper being made available online through OpenReview under a CC-BY 4.0 license (https://creativecommons.org/licenses/by/4.0/), and, the authors have read and commit to adhering to the AutoML 2025 Code of Conduct (https://2025.automl.cc/code-of-conduct/).
Reproducibility: zip
TL;DR: We accelerate NAS in expressive search spaces by using transferrable performance prediction methods
Abstract: Neural architecture search (NAS) faces a challenge in balancing the exploration of expressive, broad search spaces that enable architectural innovation with the need for efficient evaluation of architectures to effectively search such spaces. We investigate surrogate model training for improving search in highly expressive NAS search spaces based on context-free grammars. We show that i) surrogate models trained either using zero-cost-proxy metrics and neural graph features (GRAF) or by fine-tuning an off-the-shelf LM have high predictive power for the performance of architectures both within and across datasets, ii) these surrogates can be used to filter out bad architectures when searching on novel datasets, thereby significantly speeding up search and achieving better final performances, and iii) the surrogates can be further used directly as the search objective for huge speed-ups.
Submission Number: 12
Loading